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A Decade of Discovery Past . . .

EW theory → law of nature [Z , e+e−, p̄p, νN, (g − 2)µ, . . .]

Higgs-boson influence in the vacuum [EW experiments]

ν oscillations: νµ → ντ , νe → νµ/ντ [ν�, νatm, reactors]

Understanding QCD [heavy flavor, Z 0, p̄p, νN, ep, ions, lattice]

Discovery of top quark [p̄p]

Direct CP violation in K → ππ [fixed-target]

B-meson decays violate CP [e+e− → BB̄]

Flat universe: dark matter, energy [SN Ia, CMB, LSS]

Detection of ντ interactions [fixed-target]

Quarks, leptons structureless at 1 TeV scale [mostly colliders]
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Tevatron Collider is breaking new ground in sensitivity
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Tevatron Collider in a Nutshell

980-GeV protons, antiprotons (2π km)
frequency of revolution ≈ 45 000 s−1

392 ns between crossings
(36 ⊗ 36 bunches)

collision rate = L · σinelastic ≈ 107 s−1

c ≈ 109 km/h; vp ≈ c − 495 km/h

Record Linit = 1.64× 1032 cm−2 s−1

[CERN ISR: pp, 1.4 × 1032 cm−2 s−1]

Maximum p̄ at Low β: 1.661 × 1012
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The World’s Most Powerful Microscopes

nanonanophysics

CDF dijet event (
√

s = 1.96 TeV): ET = 1.364 TeV
qq̄ → jet + jet
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LHC will operate soon, breaking new ground in E & L

30 June30 June30 June30 JuneGigi Rolandi - CERNGigi RolandiGigi RolandiGigi Rolandi - CERN - CERN - CERN
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LHC in a nutshell

7-TeV protons on protons (27 km); vp ≈ c − 10 km/h
Novel two-in-one dipoles (≈ 9 teslas)

Startup: 43 ⊗ 43 → 156 ⊗ 156 bunches,
L ≈ 6 × 1031 cm−2 s−1

Early: 936 bunches, L∼> 5 × 1032 cm−2 s−1 [75 ns]

Next phase: 2808 bunches, L → 2 × 1033 cm−2 s−1

25 ns bunch spacing

Eventual: L∼> 1034 cm−2 s−1: 100 fb−1/year

(Much more from Fabiola Gianotti)
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Why the LHC is so exciting (I)

Even low luminosity opens vast new realm:
10 pb−1 (few days at initial L) yields
8000 top quarks, 105 W -bosons,
100 QCD dijets beyond Tevatron kinematic limit
Supersymmetry hints in a few weeks ?

The antithesis of a one-experiment machine;
enormous scope and versatility beyond high-p⊥

L upgrade extends ∼>10-year program . . .
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You will need a trigger . . .

Dijet integral cross section, |η| ≤ 2.5 . . .

10 pb−1 @ LHC ; ∼> 104 events with ET ∼> 1.364 TeV
(Much more from Keith Ellis)
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The importance of the 1-TeV scale

EW theory does not predict Higgs-boson mass

� Conditional upper bound from Unitarity
Compute amplitudes M for gauge boson scattering at high energies, make
a partial-wave decomposition

M(s, t) = 16π
∑

J

(2J + 1)aJ (s)PJ(cos θ)

Most channels decouple – pw amplitudes are small at all energies (except
very near the particle poles, or at exponentially large energies) – ∀MH .

Four interesting channels:

W +
L W−

L Z 0
LZ 0

L/
√

2 HH/
√

2 HZ 0
L

L: longitudinal, 1/
√

2 for identical particles
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In HE limit,1 s-wave amplitudes ∝ GFM2
H

lim
s�M2

H

(a0) →
−GFM2

H

4π
√

2
·




1 1/
√

8 1/
√

8 0

1/
√

8 3/4 1/4 0

1/
√

8 1/4 3/4 0
0 0 0 1/2




Require that largest eigenvalue respect pw unitarity condition |a0| ≤ 1

=⇒ MH ≤
(

8π
√

2

3GF

)1/2

= 1 TeV/c2

condition for perturbative unitarity

1Convenient to calculate using Goldstone-boson equivalence theorem, which reduces
dynamics of longitudinally polarized gauge bosons to scalar field theory with interaction
Lagrangian given by Lint = −λvh(2w+w− + z2 + h2) − (λ/4)(2w+w− + z2 + h2)2, with
1/v2 = GF

√
2 and λ = GF M2

H/
√

2.
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If the bound is respected
I weak interactions remain weak at all energies
I perturbation theory is everywhere reliable

If the bound is violated
I perturbation theory breaks down
I weak interactions among W±, Z , H become strong on 1-TeV scale

⇒ features of strong interactions at GeV energies will characterize
electroweak gauge boson interactions at TeV energies

New phenomena are to be found in the EW interactions at

energies not much larger than 1 TeV

Threshold behavior of the pw amplitudes aIJ follows from chiral symmetry

a00 ≈ GF s/8π
√

2 attractive

a11 ≈ GF s/48π
√

2 attractive

a20 ≈ −GF s/16π
√

2 repulsive

Lee, Quigg, Thacker, Phys. Rev. D16, 1519 (1977)
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What the LHC is not really for . . .

Find the Higgs boson,
the Holy Grail of particle physics,
the source of all mass in the Universe.

Celebrate.

Then particle physics will be over.

We are not ticking off items on a shopping list . . .

We are exploring a vast new terrain
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The Origins of Mass
(masses of nuclei “understood”)

p, [π], ρ understood: QCD

confinement energy is the source

“Mass without mass” Wilczek, Phys. Today (November 1999)

We understand the visible mass of the Universe
. . . without the Higgs mechanism

W ,Z electroweak symmetry breaking

M2
W = 1

2g2v2 = πα/GF

√
2 sin2 θW

M2
Z = M2

W /cos2 θW

q, `∓ EWSB + Yukawa couplings

ν` EWSB + Yukawa couplings; new physics?

All fermion masses ⇔ physics beyond standard model

H ?? fifth force ??
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Challenge: Understanding the Everyday

Why are there atoms?

Why chemistry?

Why stable structures?

What makes life possible?

What would the world be like, without a (Higgs)

mechanism to hide electroweak symmetry and give
masses to the quarks and leptons? Consider the

effects of all the SU(3)c ⊗ SU(2)L ⊗ U(1)Y gauge
symmetries.
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Searching for the mechanism of electroweak
symmetry breaking, we seek to understand

why the world is the way it is.

This is one of the deepest questions humans
have ever pursued, and

it is coming within the reach of particle physics.
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Our picture of matter

Pointlike constituents (r < 10−18 m)
(
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L

Few fundamental forces, derived from gauge symmetries

SU(3)c ⊗ SU(2)L ⊗ U(1)Y

Electroweak symmetry breaking: Higgs mechanism?
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Formulate electroweak theory

Three crucial clues from experiment:

Left-handed weak-isospin doublets,

(
νe

e

)

L

(
νµ

µ

)

L

(
ντ

τ

)

L

(
u

d ′

)

L

(
c

s ′

)

L

(
t

b′

)

L

;

Universal strength of the (charged-current) weak interactions;

Idealization that neutrinos are massless.

First two clues suggest SU(2)L gauge symmetry
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A theory of leptons

L =

(
νe

e

)

L

R ≡ eR

weak hypercharges YL = −1, YR = −2
Gell-Mann–Nishijima connection, Q = I3 + 1

2Y

SU(2)L ⊗ U(1)Y gauge group ⇒ gauge fields:

weak isovector ~bµ, coupling g

weak isoscalar Aµ, coupling g ′/2

Field-strength tensors

F `
µν = ∂νb`

µ − ∂µb`
ν + gεjk`b

j
µbk

ν ,SU(2)L

fµν = ∂νAµ − ∂µAν ,U(1)Y
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Interaction Lagrangian

L = Lgauge + Lleptons

Lgauge = −1
4F `

µνF
`µν − 1

4 fµν f µν ,

Lleptons = R iγµ

(
∂µ + i

g ′

2
AµY

)
R

+ L iγµ

(
∂µ + i

g ′

2
AµY + i

g

2
~τ · ~bµ

)
L.

Mass term Le = −me(ēReL + ēLeR) = −me ēe violates local gauge inv.

Theory: 4 massless gauge bosons (Aµ b1
µ b2

µ b3
µ); Nature: 1 (γ)
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Meissner effect levitates Leon Lederman (Snowmass 2001)
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Hiding EW Symmetry

Higgs mechanism: relativistic generalization of Ginzburg-Landau

superconducting phase transition

Introduce a complex doublet of scalar fields

φ ≡
(

φ+

φ0

)
Yφ = +1

Add to L (gauge-invariant) terms for interaction and propagation of
the scalars,

Lscalar = (Dµφ)†(Dµφ) − V (φ†φ),

where Dµ = ∂µ + i g ′

2 AµY + i g
2~τ · ~bµ and

V (φ†φ) = µ2(φ†φ) + |λ| (φ†φ)2

Add a Yukawa interaction LYukawa = −ζe

[
R(φ†L) + (Lφ)R

]
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Arrange self-interactions so vacuum corresponds to a
broken-symmetry solution: µ2 < 0
Choose minimum energy (vacuum) state for vacuum expectation value

〈φ〉0 =

(
0

v/
√

2

)
, v =

√
−µ2/ |λ|

Hides (breaks) SU(2)L and U(1)Y
but preserves U(1)em invariance

Invariance under G means e iαG〈φ〉0 = 〈φ〉0, so G〈φ〉0 = 0

τ1〈φ〉0 =

„

0 1
1 0

« „

0

v/
√

2

«

=

„

v/
√

2
0

«

6= 0 broken!

τ2〈φ〉0 =

„

0 −i
i 0

« „

0

v/
√

2

«

=

„

−iv/
√

2
0

«

6= 0 broken!

τ3〈φ〉0 =

„

1 0
0 −1

« „

0

v/
√

2

«

=

„

0

−v/
√

2

«

6= 0 broken!

Y 〈φ〉0 = Yφ〈φ〉0 = +1〈φ〉0 =

„

0

v/
√

2

«

6= 0 broken!
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Symmetry of laws 6⇒ symmetry of outcomes
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Electromagnetism is mediated by a massless photon,
coupled to the electric charge;

Mediator of charged-current weak interaction acquires
a mass M2

W = πα/GF

√
2 sin2 θW ,

Mediator of (new!) neutral-current weak interaction
acquires mass M2

Z = M2
W / cos2 θW ;

Massive neutral scalar particle, the Higgs boson,
appears, but its mass is not predicted;

Fermions can acquire mass—values not predicted.
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First Z from UA1
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Qualitative successes of SU(2)L ⊗ U(1)Y theory:

neutral-current interactions

necessity of charm

existence and properties of W± and Z 0

Decade of precision EW tests (one-per-mille)

MZ 91 187.6 ± 2.1 MeV/c2

ΓZ 2495.2 ± 2.3 MeV
σ0

hadronic 41.541 ± 0.037 nb
Γhadronic 1744.4 ± 2.0 MeV
Γleptonic 83.984 ± 0.086 MeV
Γinvisible 499.0 ± 1.5 MeV

Γinvisible ≡ ΓZ − Γhadronic − 3Γleptonic

light ν : Nν = Γinvisible/Γ
SM(Z → νi ν̄i ) = 2.994 ± 0.012 (νe , νµ, ντ )
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Three light neutrinos
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Measurement Fit |O
meas

O
fit
|/

meas

0 1 2 3

0 1 2 3

had(mZ)
(5)

0.02758 ± 0.00035 0.02767

mZ [GeV]mZ [GeV] 91.1875 ± 0.0021 91.1874

Z [GeV]Z [GeV] 2.4952 ± 0.0023 2.4959

had [nb]
0

41.540 ± 0.037 41.478

RlRl 20.767 ± 0.025 20.743

AfbA
0,l

0.01714 ± 0.00095 0.01643

Al(P )Al(P ) 0.1465 ± 0.0032 0.1480

RbRb 0.21629 ± 0.00066 0.21581

RcRc 0.1721 ± 0.0030 0.1722

AfbA
0,b

0.0992 ± 0.0016 0.1037

AfbA
0,c

0.0707 ± 0.0035 0.0742

AbAb 0.923 ± 0.020 0.935

AcAc 0.670 ± 0.027 0.668

Al(SLD)Al(SLD) 0.1513 ± 0.0021 0.1480

sin
2

effsin
2 lept

(Qfb) 0.2324 ± 0.0012 0.2314

mW [GeV]mW [GeV] 80.404 ± 0.030 80.376

W [GeV]W [GeV] 2.115 ± 0.058 2.092

mt [GeV]mt [GeV] 172.5 ± 2.3 172.9

LEP Electroweak Working Group, Winter 2006
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Why a Higgs boson must exist

� Role in canceling high-energy divergences
S-matrix analysis of e+e− → W +W−

(a) (b)

(c)
(d)

e+
e–

e– e–

e–

e+ e+

e+

W–

W+

W+

W+ W+

W–

W–

W–

γ

ν

Z

H

J = 1 partial-wave amplitudes M(1)
γ , M(1)

Z , M(1)
ν have –individually–

unacceptable high-energy behavior (∝ s)
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. . . But sum is well-behaved
“Gauge cancellation” observed at LEP2, Tevatron

0

10

20

30

160 180 200

√s (GeV)

σ W
W

 (
pb

)

YFSWW/RacoonWW
no ZWW vertex (Gentle)
only νe exchange (Gentle)

LEP
PRELIMINARY

17/02/2005
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J = 0 amplitude exists because electrons have mass, and can be found in
“wrong” helicity state

M(0)
ν ∝ s

1
2 : unacceptable HE behavior

(no contributions from γ and Z )

This divergence is canceled by the Higgs-boson contribution

⇒ Heē coupling must be ∝ me ,

because “wrong-helicity” amplitudes ∝ me

If the Higgs boson did not exist, something else would have to

cure divergent behavior
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If gauge symmetry were unbroken . . .

no Higgs boson

no longitudinal gauge bosons

no extreme divergences

no wrong-helicity amplitudes

. . . and no viable low-energy phenomenology

In spontaneously broken theory . . .

gauge structure of couplings eliminates the most severe divergences

lesser—but potentially fatal—divergence arises because the electron
has mass . . . due to the Higgs mechanism

SSB provides its own cure—the Higgs boson

A similar interplay and compensation must exist in any acceptable theory
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Why hadron colliders?

Rich diversity of elementary processes at high energy

Benchmark: qq̄ interactions at 1 TeV . . .

〈x〉 = 1
6 ; pp collisions at

√
s ≈ 6 TeV

Fixed-target: p ≈ 2 × 104 TeV = 2 × 1016 eV

r =
10

3
·
( p

1 TeV

)
/

(
B

1 tesla

)
km.

B = 2 T (iron magnets) ⇒ r = 1
3
× 105 km.

≈ 1
12× lunar orbit!

SC magnets (10 T) ⇒ r ≈ R⊕ = 6.4 × 103 km
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Fermi’s Dream Machine (1954)

5 000-TeV protons, 2-tesla magnets, 8 000-km radius, $1.7 × 109, 40 years
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Breakthrough: Colliding beams!

To reach 3 ⊕ 3 TeV, require

r3 TeV =
10 T

B
km.

×2 (straight sections, quads, correctors) . . .

10-T dipoles: radius of practical machine ≈ 2 km
≈ 2×Tevatron

SC magnets greatly reduce operating cost
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Key advances in accelerator technology

The idea of colliding beams

Alternating-gradient (“strong”) focusing

Superconducting accelerator magnets

Vacuum technology: in 20 hours, protons travel
≈ 2 × 1010 km, ≈ 150×Earth – Sun

Large-scale cryogenic technology

Active optics

Intense antiproton sources; beam cooling
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Competing technologies?

None for quark–gluon interactions

None for highest energies (derate composite protons)

Lepton–lepton collisions: LEP (
√

s ≈ 0.2 TeV) was
the last great electron synchrotron?

Synchrotron radiation ⇒ linear colliders for higher
√

s
; International Linear Collider

I Challenge to reach 1 TeV; L a great challenge

I Can we surpass 1 TeV? CLIC, . . .
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Competing technologies?

Lepton–hadron collisions: HERA (e±p) as example;
energy intermediate between e+e−, pp

e±(u, d) leptoquark channel, proton structure, γp

High L a challenge: beam profiles don’t match

(Far) future: µ±p collider?

Heavy-ion collisions: RHIC the prototype; LHC
(relatively) modest energy per nucleon;
quark-gluon plasma; new phases of matter
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Unorthodox projectiles?

γγ Collider: Backscattered laser beams; enhancement
of linear collider capabilities

µ+µ− collider: Advantage of elementary particle,
disadvantage of muon decay (2.2µs).

Small ring to reach very high effective energies?

Muon storage ring (neutrino factory) would turn bug
into feature!
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What is a proton?

(For hard scattering) a broad-band, unselected beam of
quarks, antiquarks, gluons, and perhaps other constituents
characterized by parton densities

f
(a)
i (xa,Q

2),

. . . number density of species i with momentum fraction
xa of hadron a seen by probe with resolving power Q2.

Q2 evolution given by QCD perturbation theory

f
(a)
i (xa,Q

2
0): nonperturbative
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PDFs determined from deeply inelastic scattering . . .

1.6 1.6

1.4 1.4

1.2 1.2

1.0 1.0

0.8 0.8

0.6 0.6

0.4 0.4

0.2 0.2

0.0 0.0

F
2

1

1

10

10

100

100

1000

1000

Q
2
 [GeV

2
/c

2
]

1.0 1.0

1.0 1.0

1.0 1.0

1.0 1.0

1.0 1.0

1.0 1.0

x=.0075

x=.0125

x=.0175

x=.025

x=.035

x=.050

x=.070

x=.090

x=.110

x=.140

x=.180

x=.225

x=.275

x=.350

x=.450

x=.550

x=.650
x=.750

ZEUS

0

1

2

3

4

5

1 10 10
2

10
3

10
4

10
5

F
2 em

-l
og

10
(x

)

Q2(GeV2)

ZEUS NLO QCD fit

tot. error

ZEUS 96/97

BCDMS

E665

NMC

x=6.32E-5 x=0.000102
x=0.000161

x=0.000253

x=0.0004
x=0.0005

x=0.000632
x=0.0008

x=0.0013

x=0.0021

x=0.0032

x=0.005

x=0.008

x=0.013

x=0.021

x=0.032

x=0.05

x=0.08

x=0.13

x=0.18

x=0.25

x=0.4

x=0.65

Chris Quigg (Fermilab) LHC Physics 2006 LNF Spring School 46 / 125



What is a proton?
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Flavor content of the proton:

∫ 1

0

dx x fi(x ,Q
2)

Asymptotic limit (Q2 → ∞): g : 8
17

; qs : 3
68

; qv : 0
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Hard-scattering cross sections

dσ(a + b → c + X ) =
∑

ij

∫
dxadxb ·

f
(a)
i (xa,Q

2)f
(b)
j (xb,Q

2)d σ̂(i + j → c + X ),

d σ̂ : elementary cross section at energy
√

ŝ =
√

xaxbs

Define differential luminosity (τ = ŝ/s)

dL
dτ

=
1

1 + δij

∫ 1

τ

dx
[
f

(a)
i (x)f

(b)
j (τ/x) + f

(a)
j (x)f

(b)
i (τ/x)

]

parton i–parton j collisions in (τ, τ + dτ) per ab collision

dσ(a + b → c + X ) =
∑

ij

dLij

dτ
σ̂(i + j → c + X )

Hard scattering: σ̂ ∝ 1/ŝ; Resonance: σ̂ ∝ τ ; form (τ/ŝ)dL/dτ
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Parton Luminosities (τ/ŝ)dL/dτ

pp(uu)
–




Ecm [TeV]

P
a
rt

o
n
 L

u
m

in
o
s
it
y
 [
n
b
]

Ecm [TeV]

P
a
rt

o
n
 L

u
m

in
o
s
it
y
 [
n
b
] pp(gg)

at
√

s = 2, 6, 14, 40, 70, 100, 200 TeV

Background: E. Eichten, I. Hinchliffe, K. Lane, and C. Quigg, Rev. Mod. Phys. 56, 579

(1984). (CTEQ5 parton distributions)
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Parton Luminosities . . .

pp(uu) pp(ud)

pp(dd) pp(uu
�
)
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Parton Luminosities . . .

pp(ud
�
) pp(u

�
d)

pp(dd
�
) pp(ug)
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Parton Luminosities . . .

pp(dg) pp(gg)

pp(ss
�
) pp(cc

�
)
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Parton Luminosities . . .

pp(bb
�
) pp(tt

�
)

pp
�
(uu

�
) pp

�
(ud

�
)
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Parton Luminosities . . .

pp
�
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�
d) pp

�
(d
�
d)
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Bounding MH from above . . .

Triviality of scalar field theory

Only noninteracting scalar field theories make sense
on all energy scales

Quantum field theory vacuum is a dielectric medium
that screens charge

⇒ effective charge is a function of the distance or,
equivalently, of the energy scale

running coupling constant
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In λφ4 theory, calculate variation of coupling constant λ
in perturbation theory by summing bubble graphs

λ(µ) is related to a higher scale Λ by

1

λ(µ)
=

1

λ(Λ)
+

3

2π2
log (Λ/µ)

(Perturbation theory reliable only when λ is small, lattice field theory

treats strong-coupling regime)
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For stable Higgs potential (i.e., for vacuum energy not to
race off to −∞), require λ(Λ) ≥ 0

Rewrite RGE as an inequality

1

λ(µ)
≥ 3

2π2
log (Λ/µ)

. . . implies an upper bound

λ(µ) ≤ 2π2/3 log (Λ/µ)
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If we require the theory to make sense to arbitrarily high
energies—or short distances—then we must take the limit
Λ → ∞ while holding µ fixed at some reasonable physical
scale. In this limit, the bound forces λ(µ) to zero.
−→ free field theory “trivial”
Rewrite as bound on MH :

Λ ≤ µ exp

(
2π2

3λ(µ)

)

Choose µ = MH , and recall M2
H = 2λ(MH)v 2

Λ ≤ MH exp
(
4π2v 2/3M2

H

)
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Moral: For any MH , there is a maximum energy scale Λ?

at which the theory ceases to make sense.

The description of the Higgs boson as an elementary
scalar is at best an effective theory, valid over a finite
range of energies

Perturbative analysis breaks down when MH → 1 TeV/c2

and interactions become strong

Lattice analyses =⇒ MH ∼< 710 ± 60 GeV/c2 if theory
describes physics to a few percent up to a few TeV

If MH → 1 TeV EW theory lives on brink of instability
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Lower bound by requiring EWSB vacuum V (v) < V (0)

Requiring that 〈φ〉0 6= 0 be an absolute minimum of the
one-loop potential up to a scale Λ yields the
vacuum-stability condition . . . (for mt ∼<MW )

M2
H >

3GF

√
2

8π2
(2M4

W + M4
Z − 4m4

t ) log(Λ2/v 2)

(No illuminating analytic form for heavy mt)

If the Higgs boson is relatively light (which would require
explanation) then the theory can be self-consistent up to
very high energies
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If EW theory is to make sense all the way up to a unification scale
Λ? = 1016 GeV, then 134 GeV/c2 ∼< MH ∼< 177 GeV
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Higgs-Boson Properties

Γ(H → f f̄ ) =
GFm2

f MH

4π
√

2
· Nc ·

(
1 − 4m2

f

M2
H

)3/2

∝ MH in the limit of large Higgs mass

Γ(H → W +W−) =
GFM3

H

32π
√

2
(1 − x)1/2(4 − 4x + 3x2) x ≡ 4M2

W /M2
H

Γ(H → Z 0Z 0) =
GFM3

H

64π
√

2
(1 − x ′)1/2(4 − 4x ′ + 3x ′2) x ′ ≡ 4M2

Z/M2
H

asymptotically ∝ M3
H and 1

2M3
H , respectively (1

2 from weak isospin)

2x2 and 2x ′2 terms ⇔ decays into transverse gauge bosons
Dominant decays for large MH : pairs of longitudinal weak bosons
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For MH → 1 TeV, Higgs boson is ephemeral: ΓH → MH .
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Higgs Mass [GeV/c2]
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Below W +W− threshold, ΓH ∼< 1 GeV

Far above W +W− threshold, ΓH ∝ M3
H
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Experimental clues to the Higgs-boson mass

Sensitivity of EW observables to mt gave early indications for massive top
Quantum corrections to SM predictions for MW and MZ arise from
different quark loops

b̄

t

W
+

W
+

t̄

t

Z
0 Z

0,

. . . alter the link M2
W = M2

Z

(
1 − sin2 θW

)
(1+∆ρ)

where ∆ρ ≈ ∆ρ(quarks) = 3GF m2
t /8π

2
√

2
Strong dependence on m2

t accounts for precision of mt estimates derived
from EW observables

Tevatron: δmt/mt ≈ 1.33%. . . Look beyond quark loops to next

most important quantum corrections: Higgs-boson effects
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Global fits to precision EW measurements

precision improves with time / calculations improve with time

0
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m Z = 91 186 ±  2 MeV
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]

2

11.94, LEPEWWG: mt = 178 ± 11+18
−19 GeV/c2

Direct measurements: mt = 172.5 ± 2.3 GeV/c2
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H quantum corrections smaller than t corrections, exhibit more subtle
dependence on MH than the m2

t dependence of the top-quark corrections

∆ρ(Higgs) = C · ln
(

MH

v

)

MZ known to 23 ppm, mt and MW well measured

Top-Quark Mass   [GeV]

mt   [GeV]
140 160 180 200

χ2/DoF: 8.10 / 8

CDF 172.0 ± 2.7

D∅ 174.5 ± 3.5

Average 172.5 ± 2.3

LEP1/SLD 172.6 +  13.2172.6 −  10.2

LEP1/SLD/mW/ΓW 178.9 +  12.0178.9 −   9.0

W-Boson Mass  [GeV]

mW  [GeV]
80 80.2 80.4 80.6

χ2/DoF: 0.9 / 1

TEVATRON 80.452 ± 0.059

LEP2 80.388 ± 0.035

Average 80.404 ± 0.030

NuTeV 80.136 ± 0.084

LEP1/SLD 80.363 ± 0.032

LEP1/SLD/mt 80.363 ± 0.021

. . . so examine dependence of MW upon mt and MH

Chris Quigg (Fermilab) LHC Physics 2006 LNF Spring School 70 / 125



)2Top Quark Mass (GeV/c
155 160 165 170 175 180 185 190
0

Tevatron March’06*  1.9± 1.3 ±172.5 
(CDF+D0 Run I+II Average)   (syst)±(stat)  

CDF Lepton+Jets*  2.2± 1.7 ±173.4 
)

-1
(L= 680 pb

CDF Dilepton*  3.1± 4.5 ±164.5 
)

-1
(L= 750 pb

D0 Lepton+Jets*  3.7± 2.8 ±170.6 
)

-1
(L= 370 pb

D0 Dilepton*  3.8±11.2 ±176.6 
)

-1
(L= 370 pb

Best Tevatron Run II (*Preliminary)
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CDF’s top-mass projections . . .
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Direct, indirect determinations agree reasonably
Both favor a light Higgs boson, . . . within framework of SM analysis.
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Fit to a universe of data
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Excluded

had
 =

(5)

0.02758±0.00035
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incl. low Q
2
 data

Theory uncertainty

Standard-Model MH ∼< 207 GeV at 95% CL

Chris Quigg (Fermilab) LHC Physics 2006 LNF Spring School 74 / 125



Within SM, LEP EWWG deduce a 95% CL upper
limit, MH ∼< 207 GeV/c2.

Direct searches at LEP ⇒ MH > 114.4 GeV/c2,
excluding much of the favored region

Either the Higgs boson is just around the corner, or
SM analysis is misleading

Things will soon be popping!
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Tevatron, LHC measurements will determine mt

within 1 or 2 GeV
. . . and improve δMW to about 15 MeV

As the Tevatron’s integrated luminosity approaches
10 fb−1, CDF and DØ will explore the region of MH

not excluded by LEP

ATLAS and CMS will carry on the exploration of the
Higgs sector at the LHC;
could require a few years, at low mass;
full range accessible, γγ, ``νν, bb̄, `+`−`+`−, `νjj , ττ
channels.
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A few words on Higgs production . . .

e+e− → H : hopelessly small
µ+µ− → H : scaled by (mµ/me)

2 ≈ 40 000
e+e− → HZ : prime channel

Hadron colliders:
gg → H → bb̄: background ?!
gg → H → γγ: rate ?!

p̄p → H(W ,Z ): prime Tevatron channel

At the LHC:
Many channels become accessible, expect sensitive search
up to 1 TeV
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Higgs search in e+e− collisions

σ(e+e− → H → all) is minute, ∝ m2
e

Even narrowness of low-mass H is not enough to make it visible . . . Sets

aside a traditional strength of e+e− machines—pole physics

Most promising:

associated production
e+e− → HZ

has no small couplings
e– e+

Z

Z H

σ =
πα2

24
√

s

K (K 2 + 3M2
Z )[1 + (1 − 4xW )2]

(s − M2
Z )2 x2

W (1 − xW )2

K : c.m. momentum of H xW ≡ sin2 θW
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`+`− → X . . .

σ(e+e− → H) = (me/mµ)2σ(µ+µ− → H) ≈ σ(µ+µ− → H)/40 000
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+ important effect of ISR

LEP 2: sensitive nearly to kinematical limit Mmax
H =

√
s − MZ

LC: sensitive for MH ∼< 0.7
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& measure excitation curve to determine

δMH ≈ 60 MeV

q

100 fb−1 /L for MH = 100 GeV
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Higgs-boson production at the Tevatron

[pb]
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The agent of electroweak symmetry breaking represents
a novel fundamental interaction

at an energy of a few hundred GeV.

We do not know the nature of the new force.

Inspired by the Meissner effect, we describe the EWSB
interaction as an analogue of the Ginzburg–Landau
picture of superconductivity.

light Higgs boson ⇔ perturbative dynamics
heavy Higgs boson ⇔ strong dynamics
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What is the nature of the mysterious new force that hides
electroweak symmetry?

A fundamental force of a new character, based on
interactions of an elementary scalar

A new gauge force, perhaps acting on undiscovered
constituents

A residual force that emerges from strong dynamics
among the weak gauge bosons

An echo of extra spacetime dimensions

We have explored examples of all four, theoretically.

Which path has Nature taken?
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Essential step toward understanding the new force that
shapes our world:

Find the Higgs boson and explore its properties.

Is it there? How many?

Verify JPC = 0++

Does H generate mass for gauge bosons, fermions?

How does H interact with itself?

Finding the Higgs boson starts a new adventure!
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Assessment

SU(2)L ⊗ U(1)Y : 25 years of confirmations

neutral currents;

W ±, Z 0

charm

(+ experimental guidance)

τ , ντ

b, t

+ experimental surprises

narrowness of ψ, ψ′

long B lifetime; large B0–B̄0 mixing

large B0–B̄0 mixing

heavy top

neutrino oscillations
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10 years of precision measurements find no significant deviations

Quantum corrections tested at ±10−3

No “new physics” . . . yet!

Theory tested at distances from 10−17 cm to ∼ 1022 cm

origin Coulomb’s law (tabletop experiments)

smaller

{
Atomic physics → QED
high-energy expts. → EW theory

larger Mγ ≈ 0 in planetary . . . measurements

Is EW theory true? Is it complete ??
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Natural to neglect gravity in particle physics

GNewton small ⇐⇒ MPlanck =

(
~c

GNewton

) 1
2

≈ 1.22 × 1019 GeV large

q

q

G ∼

E

MPlanck

Estimate B(K → πG ) ∼
(

MK

MPlanck

)2

∼ 10−38

300 years after Newton: Why is gravity weak?
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But gravity is not always negligible . . .
The vacuum energy problem

Higgs potential V (ϕ†ϕ) = µ2(ϕ†ϕ) + |λ| (ϕ†ϕ)2

At the minimum,

V (〈ϕ†ϕ〉0) =
µ2v2

4
= −|λ| v4

4
< 0.

Identify M2
H = −2µ2

V 6= 0 contributes field-independent vacuum energy density

%H ≡ M2
Hv2

8

Adding vacuum energy density %vac ⇔ adding cosmological constant Λ to
Einstein’s equation

Rµν − 1
2Rgµν =

8πGN

c4
Tµν + Λgµν Λ =

8πGN

c4
%vac
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Observed vacuum energy density %vac ∼< 10−46 GeV4

But MH ∼> 114 GeV/c2 ⇒ %H ∼> 108 GeV4

Mismatch by 54 orders of magnitude
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EWSB: another path?
Modeled EWSB on Ginzburg–Landau description of SC phase transition;
had to introduce new, elementary scalars

GL is not the last word on superconductivity: dynamical

Bardeen–Cooper–Schrieffer theory
The elementary fermions – electrons – and gauge interactions – QED –
needed to generate the scalar bound states are already present in the case
of superconductivity. Could a scheme of similar economy account for
EWSB?

SU(3)c ⊗ SU(2)L ⊗ U(1)Y + massless u and d

Treat SU(2)L ⊗ U(1)Y as perturbation

mu = md = 0: QCD has exact SU(2)L ⊗ SU(2)R chiral symmetry. At an
energy scale ∼ ΛQCD, strong interactions become strong, fermion
condensates appear, and SU(2)L ⊗ SU(2)R → SU(2)V
=⇒ 3 Goldstone bosons, one for each broken generator: 3 massless pions
(Nambu)
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Broken generators: 3 axial currents; couplings to π measured by pion
decay constant fπ.
Turn on SU(2)L ⊗ U(1)Y : EW gauge bosons couple to axial currents,
acquire masses of order ∼ gfπ.

M2 =




g2 0 0 0
0 g2 0 0
0 0 g2 gg ′

0 0 gg ′ g ′2




f 2
π

4
(W +,W−,W3,A)

same structure as standard EW theory.

Diagonalize: M2
W = g2f 2

π /4, M2
Z = (g2 + g ′2)f 2

π /4, M2
A = 0, so

M2
Z

M2
W

=
(g2 + g ′2)

g2
=

1

cos2 θW

Massless pions disappear from physical spectrum, to become longitudinal

components of weak bosons. MW ≈ 30 MeV/c2 No fermion masses . . .
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Parameters of the Standard Model

3 coupling parameters αs , αEM, sin
2 θW

2 parameters of the Higgs potential
1 vacuum phase (QCD)
6 quark masses
3 quark mixing angles
1 CP-violating phase
3 charged-lepton masses
3 neutrino masses
3 leptonic mixing angles
1 leptonic CP-violating phase (+ Majorana . . . )

26+ arbitrary parameters
parameter count not improved by unification
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The EW scale and beyond

EWSB scale, v = (GF

√
2)−

1
2 ≈ 246 GeV, sets

M2
W = g2v2/2 M2

Z = M2
W / cos2 θW

But it is not the only scale of physical interest

quasi-certain: MPlanck = 1.22 × 1019 GeV

probable: SU(3)c ⊗ SU(2)L ⊗ U(1)Y unification scale ∼ 1015−16 GeV

somewhere: flavor scale

How to keep the distant scales from mixing in the face of quantum
corrections?

OR

How to stabilize the mass of the Higgs boson on the electroweak scale?
OR

Why is the electroweak scale small?

“The hierarchy problem”
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Higgs potential V (φ†φ) = µ2(φ†φ) + |λ| (φ†φ)2

µ2 < 0: SU(2)L ⊗ U(1)Y → U(1)em, as

〈φ〉0 =

(
0√

−µ2/2|λ|

)
≡




0

(GF

√
8)−1/2

︸ ︷︷ ︸
175 GeV





Beyond classical approximation, quantum corrections to
scalar mass parameters:

++

J=1
J=1/2 J=0

m
2
(p

2
) = m

0

2
+
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Loop integrals are potentially divergent

m2(p2) = m2(Λ2) + Cg 2

∫ Λ2

p2

dk2 + · · ·

Λ: reference scale at which m2 is known
g : coupling constant of the theory

C : coefficient calculable in specific theory

For mass shifts induced by radiative corrections to remain
under control (not greatly exceed the value measured on
the laboratory scale), either

Λ must be small, or

New Physics must intervene to cut off integral
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But natural reference scale for Λ is

Λ ∼ MPlanck =

(
~c

GNewton

)1/2

≈ 1.22 × 1019 GeV

for SU(3)c ⊗ SU(2)L ⊗ U(1)Y

or

Λ ∼ MU ≈ 1015-1016 GeV for unified theory

Both � v/
√

2 ≈ 175 GeV =⇒

New Physics at E ∼< 1 TeV
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Martin Schmaltz, ICHEP02
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Only a few distinct scenarios . . .

Supersymmetry: balance contributions of fermion
loops (−1) and boson loops (+1)
Exact supersymmetry,

∑

i= fermions
+bosons

Ci

∫
dk2 = 0

Broken supersymmetry, shifts acceptably small if
superpartner mass splittings are not too large

g 2∆M2 “small enough” ⇒ M̃ ∼< 1 TeV/c2
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Coupling constant unification?
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SUSY doubles the spectrum

If mẽ < me, no Pauli principle to dictate integrity
of molecules

Dyson & Lieb: If basic constituents of matter were
bosons, individual molecules would join into a

shrinking . . . insatiable . . . undifferentiated B L O B !

Supersymmetry menaces us

with an amorphous death

Full understanding of SUSY will show us why we

live in a world ruled by the Exclusion Principle
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Only a few distinct scenarios . . .

Composite scalars (technicolor): New physics arises on
scale of composite Higgs-boson binding,

ΛTC ' O(1 TeV)

“Form factor” cuts effective range of integration

Strongly interacting gauge sector: WW resonances,
multiple W production, probably scalar bound state
“quasiHiggs” with M < 1 TeV

Extra spacetime dimensions: pseudo-Nambu –
Goldstone bosons, extra particles cancel integrand . . .

Planck mass is a mirage, based on a false
extrapolation of Newton’s 1/r 2 force law
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Gravity follows 1/r 2 law down to ∼< 1 mm (few meV)

V (r) = −
∫

dr1

∫
dr2

GNρ(r1)ρ(r2)

r12
[1 + εG exp(−r12/λG)]

 Range λG (meters)

Lamoreaux

Irvine

Eöt-Wash

Boulder

10–6 10–5 10–4 10–3 10–2

108

104

100

10–4

R
e
la

ti
v
e
 S

tr
e
n
g
th

 ε
G LamoreauxLamoreaux

Stanford

 Range λG (meters)

Lamoreaux

Irvine

Eöt-Wash

Boulder

10–6 10–5 10–4 10–3 10–2

108

104

100

10–4

R
e
la

ti
v
e
 S

tr
e
n
g
th

 ε
G

1 0.110

E (meV)

LamoreauxLamoreaux

Stanford

Experiment leaves us free to consider modifications to Gravity even at
(nearly) macroscopic distances
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Suppose at scale R Gravity propagates in 3 + n spatial dimensions
Force law changes: F ∝ 1/r 2+n

MPlanckM*1/R(1 mm)–1

1 TeV

S
tr

e
n
g
th

 o
f 
F

o
rc

e
s

3-2-1

LED

Conventio
nal G

ravity

GN ∼ M−2
Pl ∼ M?−n−2R−n M?: gravity’s true scale

Example: M? = 1 TeV ⇒ R ∼< 10−3 m for n = 2

MP is a mirage (false extrapolation)!
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Challenge: Understanding the Everyday (bis)

What would the world be like, without a (Higgs)

mechanism to hide electroweak symmetry and give
masses to the quarks and leptons? Consider the

effects of all the SU(3)c ⊗ SU(2)L ⊗ U(1)Y gauge
symmetries.

Consider the effects of all the

SU(3)c ⊗ SU(2)L ⊗ U(1)Y interactions!
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With no Higgs mechanism . . .

Quarks and leptons would remain massless

QCD would confine them in color-singlet hadrons

N mass little changed, but p outweighs n

QCD breaks EW symmetry, gives (1/2500×observed)
masses to W , Z , so weak-isospin force doesn’t confine

Rapid! β-decay ⇒ lightest nucleus is n; no H atom

Some light elements in BBN (?), but ∞ Bohr radius

No atoms (as we know them) means no chemistry, no
stable composite structures like the solids and liquids

. . . the character of the physical world would be
profoundly changed
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High expectations for the Tevatron

Biggest changes in the way we think about LHC
experiments have come from the Tevatron:

� the large mass of the top quark and
� the success of silicon microvertex detectors: heavy
flavors

Top quark is a unique window on EWSB and of
interest in its own right: single top production

Entering new terrain for new gauge bosons, strong
dynamics, SUSY, Higgs, Bs mixing, . . .
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Why the LHC is so exciting (II)

Electroweak theory (unitarity) tells us the 1-TeV scale
is special: Higgs boson or other new physics (strongly
interacting gauge bosons)

Hierarchy problem ⇒ other new physics nearby

Our ignorance of EWSB obscures our view of other
questions (e.g., identity problem). Lifting the veil at
1 TeV will change the face of physics
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The cosmic connection

Observational cosmology is like paleontology: reading
the fossil record. Only a few layers are preserved, can
we find more?

Our reading of the fossil record is influenced by our
world-view / theoretical framework.

Cosmology shows us the world we must explain,
provides questions and constraints; the answers will
come from particle physics.
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In a decade or two, we can hope to . . .

Understand electroweak symmetry breaking
Observe the Higgs boson
Measure neutrino masses and mixings
Establish Majorana neutrinos (ββ0ν)
Thoroughly explore CP violation in B
decays
Exploit rare decays (K, D, . . . )
Observe neutron EDM, pursue electron
EDM
Use top as a tool
Observe new phases of matter
Understand hadron structure quantitatively
Uncover QCD’s full implications
Observe proton decay
Understand the baryon excess
Catalogue matter and energy of the
universe
Measure dark energy equation of state
Search for new macroscopic forces
Determine GUT symmetry

Detect neutrinos from the universe
Learn how to quantize gravity
Learn why empty space is nearly weightless
Test the inflation hypothesis
Understand discrete symmetry violation
Resolve the hierarchy problem
Discover new gauge forces
Directly detect dark-matter particles
Explore extra spatial dimensions
Understand the origin of large-scale
structure
Observe gravitational radiation
Solve the strong CP problem
Learn whether supersymmetry is TeV-scale
Seek TeV-scale dynamical symmetry
breaking
Search for new strong dynamics
Explain the highest-energy cosmic rays
Formulate problem of identity

. . .
. . . learn the right questions to ask . . . and rewrite the textbooks!
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Supplemental slides

On extra-dimension approaches, see

Gustavo Burdman, “New Solutions to the Hierarchy
Problem,” LISHEP 2006, Rio de Janeiro.
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F Boselab

Why Supersymmetry?

Closely approximates the standard model

Maximal (unique) extension of Poincaré invariance

Path to gravity: local supersymmetry −→ supergravity

Solution to naturalness problem: allows fundamental
scalar at low E

(+ unification) sin2 θW , coupling constant unification

(+ universality) Can generate SSB potential

(+R-parity) LSP as dark matter candidate
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What is supersymmetry?

A fermion-boson symmetry that arises from new
fermionic dimensions

Most general symmetry of S-matrix: SUSY +
Poincaré invariance + internal symmetries

Relates fermion to boson degrees of freedom: roughly,
each particle has a superpartner with spin offset by 1

2

SUSY relates interactions of particles, superpartners

Known particle spectrum contains no superpartners ⇒
SUSY doubles the spectrum

SUSY invariance or anomaly cancellation requires two
Higgs doublets to give masses to I3 = ±1

2
particles
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Yukawa terms consistent with SUSY induce dangerous
lepton- and baryon-number violations:

λijkL
iLjE k + λ′ijkL

iQ j D̄k + λ′′Ū iD̄ jD̄k

45 free parameters . . . Transitions like

LLLE = λijk ν̃
i
Le

i
Lē

k
R + . . .

To banish these, impose symmetry under R-parity:

R = (−1)3B+L+S

. . . even for particles, odd for superpartners.
Superpartners produced in pairs
Lightest superpartner is stable

Five physical Higgs bosons:
CP even h0,H0; CP odd A0; H±
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MSSM closely resembles standard EW theory

Erler & Pierce: SUSY vs. SM, hep-ph/9801238 Cho & Hagiwara, hep-ph/9912260

| SM — SUGRA — 5 ⊕ 5? GMSB — 10 ⊕ 10? GMSB
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For heavy top, SSB may follow naturally in SUSY
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Upper bounds on Mh in the MSSM
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If nonminimal SUSY Higgs couplings are perturbative up to MU ,

Mh ∼< 150 GeV
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SUSY Challenges . . .

Extra dynamics needed to break SUSY
“Soft” SUSY breaking =⇒
MSSM with 124 parameters

Contending schemes for SUSY breaking:
I Gravity mediation. SUSY breaking at a very high scale, communicated

to standard model by supergravity interactions
I Gauge mediation. SUSY breaking nearby (∼< 100 TeV), communicated

to standard model by (nonperturbative ?) gauge forces.
I . . .

None meets all challenges
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. . . SUSY Challenges

Weak-scale SUSY protects MH , but does not explain
the weak scale (“µ problem”)

Global SUSY must deal with the threat of FCNC

(Like SM) Clear predictions for gauge-boson masses,
not so clear for squarks and sleptons

So far, SUSY is well hidden Contortions for
MH ∼> 115 GeV

Disappointing that SUSY didn’t relate particles &
forces, but doubled spectrum

Baryon- and lepton-number violating interactions arise
naturally, are abolished by decree
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. . . SUSY Challenges

SUSY introduces new sources of CP violation that are
potentially too large.

We haven’t found a convincing and viable picture of
the TeV superworld.

This long list of challenges doesn’t mean that
Supersymmetry is wrong, or even irrelevant to the 1-TeV
scale.

But SUSY is not automatically right, either!

If SUSY does operate on the 1-TeV scale, then Nature
must have found solutions to all these challenges . . .

. . . and we will need to find them, too.
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If weak-scale SUSY is present, we should see it soon in the Higgs
sector and beyond, . . . and we will live in “interesting times”

Example SUSY thresholds in e+e−

Grahame Blair
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My view

Supersymmetry is (almost) certain to be true . . . . . . as a
path to the incorporation of gravity

Whether SUSY resolves the problems of the 1-TeV scale
is a logically separate question . . . answer less obvious

Experiment will decide
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A look at technicolor

Follow the “other path” to EWSB, but with new interaction, new
constituents

massless u, d quarks −→ new fermions
“technifermions”

QCD
color

−→ new interaction
“technicolor”

Choose scale of interaction so that

fπ −→ Fπ = v = (GF

√
2)−

1
2

Generates correct MW , MZ , but produces no Yukawa couplings, so no
fermion masses

Shows possibility that gauge-boson masses & fermion masses
. . . have different origins
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To generate fermion mass, embed technicolor in a larger extended
technicolor gauge group

GETC ⊃ GTC

that couples quarks and leptons to technifermions

If GETC → GTC at scale ΛETC,

then quarks and leptons may acquire masses m ∼ Λ3
TC/Λ

2
ETC

“radiative”
mechanism

ETC
q

L
q

R

QLQL QRQR

〈QLQR〉 ≈ Λ
TC

3—
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Standard ETC is challenged by problems of reproducing wide range of
quark masses while avoiding FCNC traps

Consider |∆S | = 2 interactions

L|∆S|=2 =
g 2

ETCθ
2
sd

M2
ETC

(s̄Γµd)(s̄Γ′
µd) + · · ·

∆MK < 3.5 × 10−12 MeV =⇒ M2
ETC

g 2
ETC |θsd |

2 very large

=⇒ hard to generate heavy enough c, s, t, b

Multiscale TC (Eichten & Lane)

Many fermions (in different TC reps)
=⇒ many technipions

light ρT, ωT, πT
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Generation of fermion mass is where all the experimental

threats to Technicolor arise:

Flavor-changing neutral currents

Matter content (S parameter)

Lesson: QCD is not a good model for TC

Keep in mind: In addressing problems of fermion

mass, ETC is much more ambitious than global
supersymmetry

Current ideas: K. Lane, hep-ph/0202255, BUHEP-06-01

Review: Hill & Simmons, hep-ph/0203079
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